Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Acoust Soc Am ; 148(3): 1767, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33003872

RESUMO

This article presents an experimental and numerical parametric study of the acoustical properties of monodisperse open-cell solid foam. Solid foam samples are produced with very good control of both the pore size (from 0.2 to 1.0 mm) and the solid volume fraction (from 6% to 35%). Acoustical measurements are performed by the three-microphone impedance tube method. From these measurements, the visco-thermal parameters-namely, viscous permeability, tortuosity, viscous characteristic length, thermal permeability, and thermal characteristic length-are determined for an extensive number of foam samples. By combining Surface Evolver and finite-element method calculations, the visco-thermal parameters of body centered cubic (bcc) foam numerical samples are also calculated on the whole range of solid volume fraction (from 0.5% to 32%), compared to measured values and to theoretical model predictions [Langlois et al. (2019). Phys. Rev. E 100(1), 013115]. Numerical results are then used to find approximate formulas of visco-thermal parameters. A systematic comparison between measurements and predictions of the Johnson-Champoux-Allard-Lafarge (JCAL) model using measured visco-thermal parameters as input parameters, reveals a consistent agreement between them. From this first step, a calculation of the optimal microstructures maximizing the sound absorption coefficient is performed.

3.
Soft Matter ; 15(25): 5084-5093, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31184688

RESUMO

Foam-based solid coatings appear to be a simple solution for giving new properties to solid surfaces. An efficient method is presented for producing open-cell foam coatings having a tunable pore radius distribution (i.e. monodisperse within the range 100-1000 µm, bidisperse or fully polydisperse), tunable thickness, and tunable bulk and surface porosities. This is achieved by mixing a precursor aqueous foam and particle suspension (here a micrometer-sized polyurethane dispersion), and by spreading with a nozzle the resulting particle-loaded foam on the solid surface to be coated. It is shown that the bubble size distribution of the precursor foam can be preserved in the final solid coating. This is highlighted by using a monodisperse aqueous foam, for which coatings showed a polycrystalline structure, as well as bidisperse or fully polydisperse foams. As a major advantage of our method, the bubble size and solid volume fraction are shown to be independent parameters, allowing the size of the microstructural elements to be tuned easily, and so the expected functional properties of the coating. Results obtained with the studied polyurethane dispersion are expected to be reproduced with other dispersions.

4.
Phys Rev E ; 97(5-1): 053111, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906824

RESUMO

In this paper, we study how the permeability of solid foam is modified by the presence of membranes that close partially or totally the cell windows connecting neighboring pores. The finite element method (FEM) simulations computing the Stokes problem are performed at both pore and macroscopic scales. For foam with fully interconnected pores, we obtain a robust power-law relationship between permeability and aperture size. This result is due to the local pressure drop mechanism through the aperture as described by Sampson for fluid flow through a circular orifice in a thin plate. Based on this local law, pore-network simulation of simple flow is used and is shown to reproduce FEM results. Then this low computational cost method is used to study in detail the effect of an open window fraction on the percolation properties of the foam pore space. The results clarify the effect of membranes on foam permeability. Finally, Kirkpatrick's model is adapted to provide analytical expressions that allow for our simulation results to be successfully reproduced.

5.
Soft Matter ; 13(25): 4533-4540, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28590469

RESUMO

Mixing solid particles with liquid foam is a common process used in industry for manufacturing aerated materials. Desire for improvement of involved industrial processes and optimization of resulting foamed materials stimulates fundamental research on those complex mixtures of grains, bubbles and liquid. In this paper, we generate well-controlled particle-loaded liquid foams and we determine their elastic behavior as a function of particle size (6-3000 µm) and particle volume fraction (0-6%). We focus on both the elastic modulus exhibited by the material at small strain and the strain marking the end of the linear elastic regime. Results reveal the existence of a critical particle-to-bubble size ratio triggering a sharp transition between two well-defined regimes. For small size ratios, the behavior is governed by the mechanical properties of the solid grains, which have been proved to pack in the shape of a foam-embedded granular skeleton. In contrast, bubbles elasticity prevails in the second regime, where isolated large particles contribute only weakly to the rheological behavior of the foamed material. The modeling of elasticity for each regime allows for this transition to be normalized and compared with previously reported particle size-induced effects for foam drainage (Haffner et al. J. Colloid Interface Sci., 2015, 458, 200-208) and solid foam mechanics (Khidas et al., Compos. Sci. Technol., 2015, 119, 62-67). This highlights that rheology and the other properties of particle-loaded foams are subjected to the same size-induced morphological transition.

6.
Phys Rev E ; 95(4-1): 042604, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505841

RESUMO

Foams made of complex fluids such as particle suspensions have a great potential for the development of advanced aerated materials. In this paper, we study the rheological behavior of liquid foams loaded with granular suspensions. We focus on the effect of small particles, i.e., particle-to-bubble size ratio smaller than 0.1, and we measure the complex modulus as a function of particle size and particle volume fraction. With respect to previous work, the results highlight a new elastic regime characterized by unequaled modulus values as well as independence of size ratio. A careful investigation of the material microstructure reveals that particles organize through the network between the gas bubbles and form a granular skeleton structure with tightly packed particles. The latter is proven to be responsible for the reported new elastic regime. Rheological probing performed by strain sweep reveals a two-step yielding of the material: The first one occurs at small strain and is clearly attributed to yielding of the granular skeleton; the second one corresponds to the yielding of the bubble assembly, as observed for particle-free foams. Moreover, the elastic modulus measured at small strain is quantitatively described by models for solid foams in assuming that the granular skeleton possesses a bulk elastic modulus of order 100 kPa. Additional rheology experiments performed on the bulk granular material indicate that this surprisingly high value can be understood as soon as the magnitude of the confinement pressure exerted by foam bubbles on packed grains is considered.

7.
J Colloid Interface Sci ; 501: 103-111, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28437698

RESUMO

Elasticity of soft materials can be greatly influenced by the presence of air bubbles. Such a capillary effect is expected for a wide range of materials, from polymer gels to concentrated emulsions and colloidal suspensions. Whereas experimental results and theory exist for describing the elasto-capillary behavior of bubbly materials (i.e. with moderate gas volume fractions), foamy systems still require a dedicated study in order to increase our understanding of elasticity in aerated materials over the full range of gas volume fractions. Here we elaborate well-controlled foams with concentrated emulsion and we measure their shear elastic modulus as a function of gas fraction, bubble size and elastic modulus of the emulsion. Such complex foams possess the elastic features of both the bubble assembly and the interstitial matrix. Moreover, their elastic modulus is shown to be governed by two parameters, namely the gas volume fraction and the elasto-capillary number, defined as the ratio of the emulsion modulus with the bubble capillary pressure. We connect our results for foams with existing data for bubbly systems and we provide a general view for the effect of gas bubbles in soft elastic media. Finally, we suggest that our results could be useful for estimating the shear modulus of aqueous foams and emulsions with multimodal size distributions.

8.
Eur Phys J E Soft Matter ; 38(5): 132, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26002529

RESUMO

Drops and bubbles wrapped in dense monolayers of hydrophobic particles are known to sustain a significant decrease of their internal pressure. Through dedicated experiments we investigate the collapse behavior of such armored water drops as a function of the particle-to-drop size ratio in the range 0.02-0.2. We show that this parameter controls the behavior of the armor during the deflation: at small size ratios the drop shrinkage proceeds through the soft crumpling of the monolayer, at intermediate ratios the drop becomes faceted, and for the largest studied ratios the armor behaves like a granular arch. The results show that each of the three morphological regimes is characterized by an increasing magnitude of the collapse pressure. This increase is qualitatively modeled thanks to a mechanism involving out-of-plane deformations and particle disentanglement in the armor.

9.
Soft Matter ; 10(36): 6990-8, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24888513

RESUMO

To what extent are aqueous foams prone to clogging? Foam permeability is measured as a function of particulate loading (trapped hydrophilic particles) under conditions where the particle to bubble size ratio is allowed to increase when the number of particles per bubble is fixed. In addition to experiments performed on the foam scale, we investigated experimentally and numerically the hydrodynamic resistance of a single foam node loaded with one particle. It is shown that, with respect to solid porous media, aqueous foams clog more efficiently due to two reasons: (i) the deformation of interfaces allows for larger particles to be incorporated within the interstitial network and (ii) the interfacial mobility contributes to lowering of the reduced permeability.

10.
Soft Matter ; 10(23): 4137-41, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24752206

RESUMO

We investigate the drainage behaviour of foamy granular suspensions. Results reveal large fluctuations in the drainage velocity as bubble size, particle size and gas volume fraction are varied for a given particle volume fraction. Particle capture is proved to control the overall drainage behaviour through the parameter λ, which compares the particle size to the size of passage through constrictions within the foam pore space. λ highlights a sharp transition: for λ < 1 particles are free to drain with the liquid, which involves the shear of the suspension in foam interstices, for λ > 1 particles are trapped and the resulting drainage velocity is strongly reduced. A phenomenological model is proposed to describe this behaviour.

11.
Soft Matter ; 10(18): 3277-83, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24633178

RESUMO

The drainage of particulate foams is studied under conditions where the particles are not trapped individually by constrictions of the interstitial pore space. The drainage velocity decreases continuously as the particle volume fraction φ(p) increases. The suspensions jam--and therefore drainage stops--for values φ*(p) which reveal a strong effect of the particle size. In accounting for the particular geometry of the foam, we show that φ*(p) accounts for unusual confinement effects when the particles pack into the foam network. We model quantitatively the overall behavior of the suspension--from flow to jamming--by taking into account explicitly the divergence of its effective viscosity at φ*(p). Beyond the scope of drainage, the reported jamming transition is expected to have a deep significance for all aspects related to particulate foams, from aging to mechanical properties.

12.
Phys Rev Lett ; 104(12): 128301, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366567

RESUMO

Shear induced drainage of a foamy yield-stress fluid is investigated using MRI techniques. Whereas the yield stress of the interstitial fluid stabilizes the system at rest, a fast drainage is observed when a horizontal shear is imposed. It is shown that the sheared interstitial material behaves as a viscous fluid in the direction of gravity, the effective viscosity of which is controlled by shear in transient foam films between bubbles. Results provided for several bubble sizes are not captured by the R2 scaling classically observed for foams. Furthermore, foam films are found to be responsible for the unexpected arrest of drainage, thus trapping irreversibly a significant amount of interstitial liquid.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 1): 041405, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21230275

RESUMO

We investigate the capture of particles in soft porous media. Liquid foam constitutes a model system for such a study, allowing the radii of passage in the pore space to be tuned over several orders of magnitude by adjusting the liquid volume fraction. We show how particle capture is determined by the coupling of interstitial liquid flow and network deformation, and present a simple model of the capture process that shows good agreement with our experimental data.

14.
Eur Phys J E Soft Matter ; 30(1): 27-35, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19756794

RESUMO

Although extensively studied in the past, drainage of aqueous foams still offers major unaddressed issues. Among them, the behaviour of foam films during drainage has great significance as the thickness of the films is known to control the Ostwald ripening in foams, which in turn impacts liquid drainage. We propose a model relating the films' behavior to the liquid flow in foam channels. It is assumed that Marangoni-driven recirculation counterflows take place in the transitional region between the foam channel and the adjoining films, and the Gibbs elasticity is therefore introduced as a relevant parameter. The velocity of these counterflows is found to be proportional to the liquid velocity in the channel. The resulting channel permeability is determined and it is shown that Marangoni stresses do not contribute to rigidify the channel's surfaces, in strong contrast with the drainage of horizontal thin liquid films. New experimental data are provided and support the proposed model.


Assuntos
Modelos Químicos , Soluções/química , Tensoativos/química , Substâncias Viscoelásticas/química , Elasticidade , Reologia , Propriedades de Superfície
15.
J Colloid Interface Sci ; 334(1): 82-6, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19380148

RESUMO

A forced Ostwald ripening experiment is performed on a single foam bubble. The bubble size is followed as the system is wetted with a constant liquid flow rate delivered from one of the bubble Plateau borders. Obtained ripening velocities cannot be described with a model based on a constant film thickness assumption. Within these well-controlled experimental conditions, the film thickness is measured and found to depend on the imposed liquid flow rate. It is shown that the bubble growth rate is well predicted as the films thickness evolution is explicitly introduced in the ripening model. Finally, it is suggested that existing results for the coarsening of draining foams could be understood following the approach validated on the bubble scale.

16.
Eur Phys J E Soft Matter ; 28(3): 293-304, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19190946

RESUMO

We perform forced-drainage experiments in aqueous foams and compare the results with data available in the literature. We show that all the data can be accurately compared together if the dimensionless permeability of the foam is plotted as a function of liquid fraction. Using this set of coordinates highlights the fact that a large part of the published experimental results corresponds to relatively wet foams (epsilon approximately 0.1). Yet, most of the foam drainage models are based on geometrical considerations only valid for dry foams. We therefore discuss the range of validity of the different models in the literature and their comparison to experimental data. We propose extensions of these models considering the geometry of foam in the relatively wet-foam limit. We eventually show that if the foam geometry is correctly described, forced drainage experiments can be understood using a unique parameter --the Boussinesq number.


Assuntos
Teste de Materiais , Permeabilidade , Biofísica/métodos , Ecologia , Modelos Estatísticos , Reologia , Propriedades de Superfície , Tensão Superficial
17.
Langmuir ; 25(1): 97-100, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19032030

RESUMO

Liquid foams were recognized early to be porous materials, as liquid flowed between the gas bubbles. Drainage theories have been established, and foam permeability has been modeled from the microscopic description of the equivalent pores geometry, emphasizing similarities with their solid counterparts. But to what extent can the theoretical work devoted to the permeability of solid porous materials be useful to liquid foams? In this article, the applicability of the Carman-Kozeny model on foam is investigated. We performed measurements of the permeability of foams with nonmobile surfactants, and we show that, in introducing an equivalent specific surface area for the foam, the model accurately describes the experimental data over two orders of magnitude for the foam liquid fraction, without any additional parameters. Finally, it is shown that this model includes the previous permeability models derived for foams in the dry foams limit.

18.
J Colloid Interface Sci ; 322(2): 675-7, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18440543

RESUMO

This paper deals with the drainage of liquid foams. The liquid velocity is known to be related to viscous dissipation occurring within the elements of the liquid network, i.e. the channels and the nodes. When compared together, available values for the hydrodynamic resistance of a foam node appear to span over more than one order of magnitude. To clarify this point, we propose an alternative experimental method to estimate the value of this parameter. In contrast to previous experimental work performed on the foam scale, the node resistance is not treated as a fitting parameter, but instead it is measured directly on the microscopic scale. The results allow a consistent range of values to emerge for this parameter.

19.
J Colloid Interface Sci ; 282(2): 458-65, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15589553

RESUMO

Macroscopic properties of foams are highly dependent on the liquid volume fraction, which has motivated many studies on foam drainage in the last decade. Theoretical developments and recent experimental results have suggested that two macroscopic drainage regimes could be expected, in relation with flow transitions occurring at the microscopic level, essentially in the Plateau border channels. We have constructed a setup, the Plateau border apparatus, to study the hydrodynamics of a single Plateau border channel, focusing on the surface properties of the foaming solution. Experimental results have shown that the actual theoretical models only partially predict the dissipation of liquid flow through a Plateau border channel. The major discrepancies can be explained considering additional dissipation processes related to the properties of the interface, and to the liquid flows induced in adjoining films as the liquid flows in the channel. Evidence of the hydrodynamic coupling between the channel and the adjoining films is given in the paper.

20.
Eur Phys J E Soft Matter ; 14(3): 241-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15278691

RESUMO

The role played by the history of packing in the behaviour of a granular material confined in a column is studied experimentally. The mean pressure applied by the granular assembly to the base is measured as a function of the height of material poured in the column. We obtain reproducible mean vertical normal stress measurements without using a particular procedure to mobilise the wall friction. We focus on the influence of the filling method on the mean vertical normal stress. Filling the column via the edges induces a higher apparent mass of grain than filling it via the centre. Particular attention is devoted to the measurement of the effect of the force sensor stiffness. We show that the lower the base stiffness, the lower the mean pressure on the base. We also vary the packing fraction. We obtain an increasing relation between the apparent mass and the mean packing fraction, and show that this relation depends on the filling method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...